5.2H Solve Quadratic Equations Using Square Roots to Find Real or Complex Solutions

#1-6: Simplify the following radicals.

1.
$$\sqrt{-9}$$
 $\sqrt{3}$

4.
$$3\sqrt{-100}$$

7. What is the value of i^2 ?

#8-13: Simplify the following complex expressions.

8.
$$(3i)^2$$

$$92^2$$

$$\boxed{-9}$$

9.
$$(-5i)^2$$

$$\frac{25i}{1-25}$$

10.
$$(-i)^2$$

$$\downarrow^2 =$$

11.
$$(3-5i)^2$$

$$9-30L+25L^3$$

$$9-30L-25$$

$$1-16-30L$$

13.
$$(-2-7i)^2+5$$

 $4+28i+49i^2+5$
 $4+38i-49+5$
 $1-40+28i$

#14-17: Verify that each of the following values are solutions to the given equation. Show all of your work.

work.
14.
$$-2x^2 + 3 = 21$$
; $x = 3i, x = -3i$
 $-2(3i)^3 + 3 = 21$
 $-2(9i)^{-1}$
 $18 + 3 = 21$
 $-2(-3i)^3 + 3 = 21$
 $-2(9i)^3$
 $-18i^3$
 $18 + 3 = 21$

15.
$$(x-5)^2 - 1 = -17$$
; $x = 5 + 4i$, $x = 5 - 4i$
 $((5+4i)-5)^2 - 1 = -17$
 $(4i)^3$
 $(6i)^3$
 $(-4i)^3 - 1 = -17$
 $(-4i)^3 - 1$
 $(6i)^3$
 $(-16-1)^3 = -17$

5.2H Solve Quadratic Equations Using Square Roots to Find Real or Complex Solutions

#14-17 (continued): Verify that each of the following values are solutions to the given equation. Show all of your work.

16.
$$x^{2}+11=7$$
; $x=2i, x=-2i$
 $(2i)^{2}+11=7$
 $4i^{2}+11$
 $4(4)+11=7$
 $(2i)^{2}+11=7$
 $(2i)^{2}+11=7$
 $(2i)^{2}+11=7$

17.
$$(x+2)^2 = -25$$
; $x = -2+5i$, $x = -2-5i$

$$((-2+5i)+2)^2 = -25$$

$$(5i)^2$$

$$25(-1) = -25$$

$$(-2-5i)^2$$

$$25(-1) = -25$$

$$(-5i)^2$$

$$25(-1) = -25$$

#18-21: Solve each equation for real or complex solutions. Verify your solutions.

18.
$$x^2 + 3 = 51$$

$$\sqrt{X^2 + 48}$$

$$/ \times / = \sqrt{16.3}$$

$$\sqrt{X} = \frac{1}{4} = \sqrt{3}$$

19.
$$\sqrt{(x-1)^2} = \sqrt{-24}$$
 $|x-1| = \sqrt{-1/4.6}$
 $|x-1| = \frac{1}{2}i\sqrt{6}$
 $|x-1| = 1+3i\sqrt{6}$
 $|x-1| = 1+3i\sqrt{6}$

Verify your solution(s):

$$(4\sqrt{3})^{2} + 3 = 51$$

 $16.3 + 3 = 51$
 $(-4\sqrt{3})^{2} + 3$
 $16.3 + 3 = 51$

Verify your solution(s):
$$\left(\left(1+\frac{2i\sqrt{6}}{5}\right)^{-1}\right)^{2} = -\frac{34}{54}$$

$$\left(\frac{2i\sqrt{6}}{5}\right)^{2}$$

$$4i^{2}.6$$

$$34(-1) = -34$$

$$\left(\left(1-\frac{2i\sqrt{6}}{5}\right)^{-1}\right)^{2} = -34$$

$$\left(-\frac{2i\sqrt{6}}{5}\right)^{2}$$

$$4i^{2}.6$$

$$34(-1) = -34$$

Solve Quadratic Equations Using Square Roots to Find Real or Complex Solutions

#18 – 21 (continued): Solve each equation for real or complex solutions. Verify your solutions.

20.
$$3x^{2}-27=0$$

$$3x^{3}=27$$

$$\sqrt{x^{2}+9}$$

$$\frac{1\times (-3)}{1\times (-3)}$$

21.
$$5(x+1)^{2} - 3 = -48$$

 $+3$ $+3$
 $5(x+1)^{2} = -45$
 $\sqrt{(x+1)^{2}} = -95$
 $\sqrt{(x+1)^{2}} = -105$
 $\sqrt{(x+1)^{2}} = -105$
 $\sqrt{(x+1)^{2}} = -105$
 $\sqrt{(x+1)^{2}} = -105$

✓ Verify your solution(s):

$$3(3)^{3}-27=0$$

 $3.9-27=0$
 $3(-3)^{2}-27$
 $3.9-27=0$

Verify your solution(s):

$$5((-1+3i)+1)^{2}-3=-48$$

 $5(3i)^{2}$
 $5(9i)^{2}$
 $45i^{2}$
 $-45-3=-48$

Verify your solution(s):

$$5((-1+3i)+1)^{2} - 3 = -48$$

$$5((-1-3i)+1)^{2} - 3 = -48$$

$$5(3i)^{2}$$

$$5(-3i)^{2}$$

$$5(-3i)^{2}$$

$$5(-3i)^{2}$$

$$45i^{2}$$

$$-45 - 3 = -48$$

$$-45 - 3 = -48$$

22. The height, h, of a water balloon (in feet) at time t (in seconds) is given by the equation

 $h(t) = -16(t - 0.45)^2 + 32$. If a student throws the balloon and it lands on the ground, how long is the balloon in the air? Verify your solution(s). $= -16(1.86 - .45)^2 + 32 = 0$ Werify your solution(s). $= \frac{16(1.86 - .45)^{2} + 32}{(1.41)^{2}} = 0$ $= \frac{16(1.9881) + 32}{(1.41)^{2}}$ $= \frac{16(1.86 - .45)^{2} + 32 = 0$ $= \frac{16(1.9881) + 32}{(1.41)^{2}}$ $= \frac{16(1.86 - .45)^{2} + 32 = 0$ $= \frac{16(1.9881) + 32}{(1.41)^{2}}$ $= \frac{16(1.9881) + 32}{(1.864)^{2}}$ $= \frac{16(1.9881)$

23.
$$f(x) = x^{2} - 125$$

 $x^{2} - 125 = 6$
 $\sqrt{x^{2}} = \sqrt{125}$
 $/x = \sqrt{5} = 5$
 $/x = 5\sqrt{5} = x = -5\sqrt{5}$

24.
$$f(x) = (x+7)^{2}$$

$$\sqrt{(x+7)^{2}} = \sqrt{0}$$

$$/x+7/=0$$

$$/x = -7$$

 $(5\sqrt{5})^{2} - 125 = 0$ $(-5\sqrt{5}) - 125 = 0$ $(-7 + 7)^{2} = 0$ $(-7 + 7)^{2} = 0$ $(-7 + 7)^{2} = 0$ $(-7 + 7)^{2} = 0$

Verify your solution(s):
$$(-7 + 7)^2 = 0$$

$$(-7 + 7)^2 = 0$$

5.2H Solve Quadratic Equations Using Square Roots to Find Real or Complex Solutions

#23 - 26 (continued): Find the real and/or complex roots of each function. Verify your solutions!

25.
$$f(x) = -2(x-2)^{2} - 18$$

$$-2(x-2)^{2} - 18 = 0$$

$$-2(x-2)^{2} = 18$$

$$\sqrt{(x-2)^{2}} = 18$$

$$\sqrt{(x-2)^{2}} = \sqrt{-9}$$

$$|x-2| = 3c$$

$$x = 2+3c$$

$$\sqrt{(x-3)^{2}} = 2-3c$$

$$\sqrt{(x-3)^{2}} = 3c$$

$$\sqrt{($$

26.
$$f(x) = 4x^{2} + 24$$
 $4x^{2} + 34 = 0$
 $4x^{2} = -34$
 $1 \times 1 = i\sqrt{6}$
 $1 \times 1 = i\sqrt{6}$

Verify your solution(s): $-2(\frac{2+3(-2)^{2}-18}{2} = 0$ $-2(\frac{3+3(-2)^{2}-18}{2} = 0$

27. The area of a square can be found using the formula $A = s^2$, where "A" is the area and "s" is the length of one side. If the area of a square is 50 square inches, what is the length of one side? Round your answer to the nearest thousandth and verify your solution(s).

The function $f(x) = x^2 + 4$ has no x-intercepts, as shown in the graph to the right. Use algebra to show that no real roots exist for

